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Abstract. China has witnessed notable increases in surface ozone (O3) concentrations since 2013, with meteorology identified 12 

as a critical driver. However, meteorological contributions vary with different meteorological datasets and analytical methods, 13 

and their uncertainties remain unassessed. This study leveraged decadal observational O3 records (2013–2022) across China, 14 

revealing intensified nationwide O3 pollution with increasing O3 trends of 0.79–1.31 ppb yr–1 during four seasons. We gave 15 

special focus on uncertainties of meteorology-driven O3 trends by using diverse meteorological datasets (ERA5, MERRA2, 16 

FNL) and diverse analytical methods (Multiple Linear Regression, Random Forest, GEOS-Chem model). A useful statistic 17 

(coefficient of variation, CV) was adopted as an uncertainty quantification metric. For multi-dataset analysis, models driven 18 

by different meteorological datasets exhibited the maximum meteorology-driven O3 trend (+0.55 ppb yr–1, multi-dataset mean) 19 

with the highest consistency (CV=0.25) in spring. The FNL-driven model always obtained larger trends compared to ERA5 20 

and MERRA2, which could be attributed to inability to accurately evaluate planetary boundary layer height in FNL dataset. 21 

For multi-method analysis, three methods demonstrated optimal consistency in winter (CV=0.40) and the worst consistency 22 

in summer (CV=2.00). The meteorology-driven O3 trends obtained from GEOS-Chem model were almost smaller than those 23 

obtained by other two methods, partly resulting from higher simulated O3 values before 2018. Overall, all analyses driven by 24 

diverse meteorological datasets and analytical methods drew a robust conclusion that meteorological conditions almost boosted 25 

O3 increases during all seasons; the uncertainties caused by different analytical methods were larger than those caused by 26 

diverse meteorological datasets. 27 
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1 Introduction 30 

Since 2013, the Chinese government has implemented a series of policies to mitigate air pollution resulting from the repaid 31 

industrial and urban expansion, such as the “Air Pollution Prevention and Control Action Plan” (Wang, 2021). Several criteria 32 

air pollutants exhibited decreases due to the emission control efforts, but not ozone (O3) (Qi et al., 2023; Shen et al., 2020).In 33 

China, O3 concentrations were increased by 50–124 μg m–3 from 2015 to 2022 (Yao et al., 2024). The formation of surface O3 34 

depends nonlinearly on its precursors and is strongly influenced by meteorological conditions and anthropogenic emissions 35 

(Wang et al., 2017). The impact of emission-related factors on O3 increase in China over the past decade has been extensively 36 

debated, including the ineffective control of volatile organic compounds (VOCs) emissions, the heightened O3 photochemical 37 

production due to the rapid decrease in PM2.5, and the reduced nitric oxide (NO) titration effect (Li et al., 2019, 2022; Lin et 38 

al., 2021a; Liu and Wang, 2020b; Ren et al., 2022).  39 

Meteorological conditions also play a crucial role in shaping surface O3 trends (Liu et al., 2023; Lu et al., 2019b), resulting in 40 

increased O3 concentrations during warm seasons over most of the United States, the European Union, and China from 2014 41 

to 2019 (Lyu et al., 2023). In China, the meteorological impacts on O3 levels may be comparable to the anthropogenic 42 

contributions (Li et al., 2020; Liu and Wang, 2020a). From 2013 to 2018, meteorology could account for 43% of the daily 43 

variability in summer surface O3 concentrations in eastern China (Han et al., 2020). Adverse meteorological conditions were 44 

identified as the cause of the worsening O3 trends during 2015–2020 in Beijing-Tianjin-Hebei (BTH), Yangtze River Delta 45 

(YRD), and Pearl River Delta (PRD) regions (Hu et al., 2024b). In YRD, Dang et al. (2021) found that meteorological factors 46 

contributed 84% of the O3 increase during the summers of 2012–2017. In PRD, meteorological conditions contributed 83% of 47 

the increasing O3 trends during the summers of 2015–2019 (Mousavinezhad et al., 2021). After 2019, meteorological 48 

conditions tended to improve O3 air quality (Liu et al., 2023; Wang et al., 2023). Compared to 2019, the wetter and cooler 49 

meteorological conditions in 2020 reduced O3 concentrations by 2.9 ppb in eastern China (Yin et al., 2021). However, during 50 

2022’s summer, a notable rebound in O3 levels occurred with O3 concentrations rising by 12–15 ppb in China compared to 51 

2021, which was attributable to the extreme heatwave events (Qiao et al., 2024). With climate change, the frequency of extreme 52 

O3 pollution events is expected to increase (Gao et al., 2023; Ji et al., 2024). Given the shifted meteorological effects on O3 53 

and climate change, it is imperative to conduct O3-Meteorology researches focusing on longer time frames to gain deeper 54 

insights into the long-term changes in O3 concentrations (Wang et al., 2024a).  55 

Studies conducted over the past six years to determine the meteorological influence on the surface O3 trend have been 56 

systematically reviewed, as documented in Table S1. The meteorological influence on surface O3 concentrations is commonly 57 

assessed by using the traditional statistical model (TSM), machine learning model (MLM), and chemical transport model 58 

(CTM), driven by reanalysis meteorological products such as the fifth-generation European Centre for Medium-Range 59 

Weather Forecasts atmospheric reanalysis of the global climate (ERA5), the Modern-Era Retrospective Analysis for Research 60 

and Applications, version 2 (MERRA2), and the National Centres for Environmental Prediction (NCEP) Final Operational 61 
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Global Analysis data (FNL). Although several studies have demonstrated that meteorological impacts derived from CTM 62 

results can corroborate the results of TSM (Liu et al., 2023; Yan et al., 2024) or MLM (Ni et al., 2024; Yin et al., 2021), 63 

uncertainties in the determination of meteorological effects on surface O3 concentrations cannot be neglected. For example, 64 

Pan et al. (2023) reported that the meteorological impact on O3 trends in Beijing during 2013–2020 was +0.52 ppb yr–1, which 65 

is only half of the value estimated by Gong et al. (2022).  66 

Uncertainties in quantifying the drivers of O3 trends can be ascribed to the discrepancies between different meteorological 67 

datasets and between different methods (Guo et al., 2021; Weng et al., 2022; Yao et al., 2024). Regarding the uncertainty 68 

caused by different meteorological datasets, the meteorologically driven annual variations of O3 concentrations from 2017 to 69 

2019 identified by the MERRA2-driven TSM are not consistent with the ERA5-driven TSM during the summer of YRD (Hu 70 

et al., 2024a; Qian et al., 2022). During the summer of 2013–2019 in YRD, Li et al. (2019) reported a trend of +0.7 ppb yr–1 71 

in meteorology-driven O3 concentrations using the MERRA2-driven TSM, while the trend of Yan et al. (2024) was –0.3 μg 72 

m–3 yr–1 using the ERA5-driven TSM. Regarding the uncertainty caused by different methods, the meteorology-driven O3 trend 73 

identified by MLM for 2019–2021 was 2.4 times larger than that identified by CTM based on the same meteorological dataset 74 

input (MERRA2) in the North China Plain (NCP) during summer (Wang et al., 2024a). In BTH, from 2021 to 2022, Luo et al. 75 

(2024) identified a negative meteorological contribution based on the ERA5-driven MLM, while Yan et al. (2024) suggested 76 

a positive contribution (+4.3 μg m–3) based on the ERA5-driven TSM during summer.  77 

On the basis of the above-mentioned, large uncertainties caused by multi-dataset or multi-method exist in O3-Meteorology 78 

analyses. However, available intercomparisons of O3 analyses mainly focused on predicting the O3 concentrations. For 79 

example, Wang et al. (2024b) and Weng et al. (2023) compared the differences in O3 concentration prediction caused by 80 

different dataset and models, respectively. The uncertainties in quantifying the meteorological contributions to O3 trends 81 

caused by multi-dataset and multi-method remain unassessed. In addition, previous studies have predominantly focused on 82 

summer O3 pollution, although reports indicate an extension of the O3 pollution season to winter and spring across major 83 

clusters in China (Cao et al., 2024a; Li et al., 2021) and an unfavourable meteorological impact on O3 air quality in spring and 84 

winter in BTH (Luo et al., 2024). It is essential to conduct an intercomparison of meteorology-driven O3 quantification using 85 

multi-dataset and multi-method across all seasons. 86 

This study utilized 10-year (2013–2022) surface O3 observations in China to investigate long-term O3 trends and quantify the 87 

meteorological influence on O3 trends using diverse meteorological datasets and analytical methods. Figure 1 shows the 88 

framework and the main objectives were: (1) to assess uncertainties in identifying the meteorological influences caused by 89 

multi-dataset. This was achieved by employing the TSM (i.e. multiple linear regression, MLR) driven by different reanalysis 90 

meteorological products (i.e. ERA5, MERRA2, and FNL); (2) to assess uncertainties in identifying meteorological effects 91 

caused by multi-method. This was achieved by establishing three models corresponding to TSM (i.e. MLR), MLM (i.e. random 92 

forest, RF), and CTM (i.e. GEOS-Chem, GC), each driven by the MERRA2 product; (3) to calculate the mean of meteorology-93 
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driven O3 trends driven by three datasets (multi-dataset mean) and three methods (multi-method mean) to derive relatively 94 

robust results.  95 

Our paper is structured as follows: Section 2 briefly introduces the details of surface O3 observations and different 96 

meteorological datasets, as well as the framework of three methods, namely MLR, RF, and GC. The quantification of the 97 

uncertainties in the meteorology-driven O3 trends caused by multi-dataset and multi-method is presented in Section 3. Section 98 

4 concludes the paper. The findings of this study provide a scientific foundation for developing regional and seasonal strategies 99 

to mitigate and manage O3 pollution in China.  100 

 101 

Figure 1. The framework of the uncertainty assessment in this study. 102 

2 Data and Methods  103 

2.1 Surface O3 and meteorological data sources  104 

Hourly surface O3 observations from over 1000 state-controlled stations operated by the China National Environmental 105 

Monitoring Centre from 2013 to 2022 were used to analyze the long-term O3 trends across all seasons: spring (March-April-106 

May), summer (June-July-August), autumn (September-October-November), and winter (December-January-February). The 107 

maximum daily 8-hour average (MDA8) O3 was calculated as an air quality indicator after filtering out abnormal data using 108 

the z-scores method. For detailed information on data quality control, refer to He et al. (2017).  109 

In this study, we selected three widely used reanalysis products to assess the uncertainties caused by different meteorological 110 

datasets. Variables during 2013–2022 from ERA5, MERRA2, and FNL, as detailed in Table S2, were selected as 111 

meteorological inputs for building MLR models. These reanalyses have spatial resolutions of 0.25°×0.25°, 0.625°×0.5°, and 112 
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1°×1° on a global latitude-longitude grid, respectively. In Section 3.2, we have also incorporated the NCEP FNL reanalysis 113 

product with a spatial resolution of 0.25°×0.25° (FNL025) for the period 2016–2022 to explore the effect of spatial resolution 114 

on the analysis of uncertainties caused by multi-dataset. 115 

2.2 Methods for obtaining long-term series and meteorological influence  116 

2.2.1 Kolmogorov–Zurbenko (KZ) filter 117 

The KZ filter, known for its ability to extract low frequency signals from time series data and handle missing values, has been 118 

extensively applied in analyzing air quality variations (Eskridge et al., 1997; Rao and Zurbenko, 1994; Wise and Comrie, 119 

2005). This filter is particularly useful in studying variations in air quality over time. The original time series of air pollutants 120 

or meteorological variables (𝑋(𝑡)) can be decomposed by the KZ filter into the following form:  121 

 𝑋(𝑡) = 𝑋𝑆𝑇 (𝑡) + 𝑋𝑆𝑁 (𝑡) + 𝑋𝐿𝑇 (𝑡) (1) 

 𝑋𝐿𝑇 (𝑡) = 𝐾𝑍(365,3)𝑋(𝑡) (2) 

 𝑋𝐵𝐿 (𝑡) = 𝐾𝑍(15,5)𝑋(𝑡) (3) 

 𝑋𝑆𝑇 (𝑡) = 𝑋(𝑡) − 𝑋𝐵𝐿 (𝑡) (4) 

In the decomposition process, 𝑋(𝑡) represents the original time series, while 𝑋𝑆𝑇 (𝑡), 𝑋𝑆𝑁 (𝑡), and 𝑋𝐿𝑇 (𝑡) denote the short-122 

term, seasonal, and long-term components, respectively. The baseline component, 𝑋𝐵𝐿(𝑡), is defined as the sum of 𝑋𝑆𝑁 (𝑡) and 123 

𝑋𝐿𝑇 (𝑡). The 𝐾𝑍(𝑝,𝑞) filter executes 𝑞 iterations with 𝑝 as the moving average window length of the 𝑋(𝑡) series. Specially, the 124 

𝑋𝐿𝑇 (𝑡) series is derived using the 𝐾𝑍(365,3) filter, capturing long-term changes with periods exceeding 1.7 years. The 𝑋𝐵𝐿 (𝑡) 125 

series is obtained through the 𝐾𝑍(15,5)  filter, while the 𝑋𝑆𝑇 (𝑡) series represents short-term fluctuations with period less than 126 

33 days in the original time series. The KZ filter can fill in missing values by using iterated moving average technique. 127 

Although not all of the ozone measurement sites were active over the entire period 2013–2022, missing value problem can be 128 

handled for most stations after we conduct three iterations with 365-day moving average. 129 

In this study, the 𝐾𝑍(365,3) filter was applied to extract the long-term trends in observed, meteorology-driven, and emission-130 

driven MDA8 O3 concentrations (see details in Fig. S1) during 2013–2022, as detailed in Sections 2.2.2, 2.2.3, and 2.2.4. 131 

2.2.2 Stepwise MLR for separating meteorological influence  132 

As vividly illustrated in Fig. S1, a data-based TSM (i.e., MLR integrating the KZ filter) was employed to separate the observed 133 

MDA8 O3 concentrations into meteorology-driven and emission-driven concentrations (Sadeghi et al., 2022; Shang et al., 2023; 134 

Zhang et al., 2022a). We initially applied the KZ filter to disassemble the MDA8 O3 time series and all meteorological variables 135 

listed in Table S2 into short-term, baseline, and long-term components at individual state-controlled stations for each season. 136 

Subsequently, a series of screening processes aligned with our previous research (Wang et al., 2024c), were executed to 137 
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perform stepwise MLR on the short-term/baseline MDA8 O3 concentrations and a group of meteorological variables series, 138 

respectively. The established MLR model is presented herein:  139 

 𝐶𝑠,𝑟(𝑡) = 𝑏0,𝑠,𝑟 + Σ𝑖=1
𝑘 𝑏𝑖,𝑠,𝑟 × 𝑀𝑒𝑡𝑖(𝑡) + 𝜀 (5) 

Here, 𝐶𝑠,𝑟(𝑡) represents the MDA8 O3 concentration for season 𝑠 and monitoring station 𝑟, while 𝑀𝑒𝑡𝑖(𝑡) signifies the 𝑖-th 140 

meteorological variable out of a total of 𝑘, and 𝑏𝑖,𝑠,𝑟 is the corresponding regression coefficient. 𝑏0,𝑠,𝑟 denotes the intercept 141 

term, and 𝜀 is the residual term.  142 

Finally, MLR models driven by meteorological variables from ERA5, MERRA2, or FNL will be constructed, allowing a 143 

comprehensive analysis of multi-dataset uncertainties. The meteorological impact on O3 trends derived from the MERRA2-144 

driven MLR model will also be integrated into the analysis of multi-method uncertainties to improve the comparability of 145 

results.  146 

2.2.3 Random forest (RF) for deriving meteorological influence  147 

The application of MLM in O3 air quality research is becoming increasingly prevalent due to its superior accuracy, user-148 

friendly nature, and capability to capture nonlinear relationships (Ni et al., 2024; Yao et al., 2024; Zhang et al., 2022b). 149 

Considering the limited influence of discrepancy in O3-Meteorology analyses stemming from different machine learning 150 

algorithms (Wang et al., 2024a), we opted to build a representative MLM known as the meteorological normalisation model 151 

based on the RF algorithm (Ding et al., 2023; Ji et al., 2024; Zhang et al., 2023), to delineate meteorology- and emission-152 

driven O3 concentrations.  153 

RF stands out as a tree-based ensemble learning algorithm adept at handling nonlinear issues and reducing overfitting (Breiman, 154 

2001). An RF model was developed for each state-controlled station in each season to predict the MDA8 O3 concentration 155 

using the Python package “Sklearn-RandomForestRegressor”. The predictors included six temporal variables (year, month of 156 

a year, day of a week, day of a month, day of a year, Unix time), serving as proxies for anthropogenic emission intensity 157 

(Grange et al., 2018), alongside six MERRA2 meteorological variables as listed in Table S2 (i.e. SLP, T2max, U10, V10, 158 

RH2, PBLHday). The training dataset comprised 70% of the data, while the remaining 30% was reserved for model evaluation. 159 

A statistical cross-validation technique was employed to determine optimal hyperparameters for enhancing RF prediction 160 

performance (Weng et al., 2022). Coefficient of determination (R2) values were utilized to assess model performance for each 161 

station, with stations exhibiting R2 < 0.5 (marked in blue in Fig. S2b) being excluded to ensure model credibility. 162 

After establishing the RF model, both the original time variables and resampled meteorological variables were utilized as input 163 

data. The meteorological variables were resampled by randomly selecting data from the two weeks before and after the 164 

specified date. To derive the de-weathered MDA8 O3 concentration for a given day (e.g., March 1, 2013), the random 165 

resampling process was iterated a thousand times. Our methodology closely follows that of Vu et al. (2019), with a more 166 
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detailed process shown in Fig. S2(a). The meteorology-driven MDA8 O3 concentrations were computed as the difference 167 

between the observed concentrations and de-weathered concentrations (i.e. emission-driven MDA8 O3 concentrations).  168 

2.2.4 GEOS-Chem (GC) simulation for quantifying meteorological influence 169 

The numerical analysis of surface O3 in China was performed with the GC classic version 13.3.3 170 

(https://github.com/geoschem/GCClassic/releases/tag/13.3.3). Developed as a global 3-D model, GC incorporates a fully 171 

coupled O3–NOx–VOCs–aerosol–halogen chemical mechanism, driven by the MERRA2 meteorological input. Numerous 172 

studies have leveraged GC to simulate O3 air quality in China, demonstrating alignment between observational data and model 173 

outcomes (Dai et al., 2024; Dang et al., 2021; Li et al., 2019; Lu et al., 2019a). We employed the nested-grid GC to simulate 174 

the long-term surface O3 concentrations and to quantify the meteorology-driven MDA8 O3 trends over China. The nested-grid 175 

domain was set over China’s mainland (15–55°N, 70–140°E) with a horizontal resolution of 0.5° latitude by 0.625° longitude 176 

and 47 vertical layers extending up to an altitude of 0.01 hPa. A global simulation with a horizontal resolution of 2°×2.5° 177 

provided the chemical boundary conditions for the nested-grid simulation every 3 hours. To ensure model stability and 178 

accuracy, a 6-month spin-up simulation was conducted before the commencement of the targeted 10-year period from March 179 

2013 to February 2023.  180 

Emissions management within GC is facilitated by the Harmonized Emissions Component, a system introduced by (Lin et al., 181 

2021b). Anthropogenic emissions are sourced from the Community Emissions Data System (CEDS) inventory globally, with 182 

specific overwriting by the Multi-resolution Emission Inventory for China (MEIC) within the Chinese region. The simulations 183 

for 2021–2022 adopt a similar approach to Zhai et al. (2021), using 2019 MEIC emissions with NOx emissions reduced by 8 184 

~ 13% and 2017 MEIC with VOCs emissions reduced by 10 ~ 14%, based on the policy released by Ministry of Ecology and 185 

Environment of the People's Republic of China. For natural emissions, biogenic VOCs, soil, and lightning NOx were calculated 186 

online in the model. Emissions from biomass burning, ships, and aircraft are sourced from the Global Fire Emissions Database, 187 

the CEDS inventory, and the 2019 Aircraft Emissions Inventory Code, respectively.  188 

In order to assess the model’s performance and to get a quantification of meteorology-driven O3 trends during the period of 189 

2013–2022, two sets of simulations were conducted: (1) BASE: the standard simulation of O3 concentrations from 2013 to 190 

2022, where both meteorological fields and emissions (including anthropogenic, natural, and biomass emissions) vary year by 191 

year from 2013 to 2022; (2) FixE2013: a “fixed-emission simulation” where meteorological conditions vary from 2013 to 192 

2022 while anthropogenic emissions remain constant at 2013 levels. The FixE2013 simulation is designed to quantify the 193 

meteorological influence on O3 variations. Figure S3 evaluates the performance of the GC simulation for 2013–2022. The GC 194 

model generally captures the monthly variability in MDA8 O3 over China and three cluster megacities, with the correlation 195 

coefficients greater than 0.80, although it always shows a high bias of surface O3 in warm seasons (Dai et al., 2024), which 196 
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can be attributed to its inability to capture the complex terrain, local pollution sources and meteorological conditions, or 197 

overestimates of the correlations between the surface O3 concentration and temperature (Shen et al., 2022; Sun et al., 2021). 198 

2.3 Assessment of uncertainties caused by multi-dataset and multi-method 199 

In this study, the coefficient of variation (CV) is applied to assess the uncertainties in O3-Meteorology analyses caused by 200 

different meteorological datasets or methods. The CV, calculated as the ratio of the standard deviation to the mean, serves as 201 

a statistical metric commonly utilized to measure the diversity within datasets or models (Bedeian and Mossholder, 2000; Chen 202 

et al., 2019). In this study, higher CVs indicate lower consistency of meteorologically driven O3 trends derived from different 203 

datasets or methods. Given the possibility of disparate meteorology-driven O3 trends detected by different datasets or methods, 204 

we consider the absolute value of the CV as a quantitative indicator of the uncertainties. When examining the uncertainties 205 

arising from different datasets, the CV represents the standard deviation of trends derived from the ERA5, MERRA2, and 206 

FNL-driven MLR models divided by the mean. Similarly, in the context of multi-method uncertainties, the CV is the standard 207 

deviation of trends identified by the MLR, RF, and GC models divided by the mean. 208 

3 Results 209 

3.1 Observed trends in surface O3 concentration 210 

Figure 2 shows the trends in observed MDA8 O3 concentrations over a 10-year period during four seasons. Noteworthy 211 

increases in O3 concentrations were observed at 78 ~ 93% of state-controlled stations over the years, with the national trend 212 

being +1.31 ppb yr–1, +0.93 ppb yr–1, +0.79 ppb yr–1, and +0.80 ppb yr–1 in spring, summer, autumn, and winter, respectively.  213 

The major eastern megacity clusters in China also displayed their highest MDA8 O3 increase trends in spring, with trends of 214 

+1.16 ppb yr–1 in BTH, +1.61 ppb yr–1 in YRD, and +1.48 ppb yr–1 in PRD, which has been reported in previous studies (Cao 215 

et al., 2024b; Chen et al., 2020; Wang et al., 2022). During summer, BTH and YRD faced more severe challenges in O3 216 

prevention and control compared to PRD, with rising MDA8 O3 trends in the former two regions being about three times 217 

higher than that in PRD (Fig. 2b).  218 

In terms of O3 growth rates, Shanxi province and Anhui province ranked the top two provinces in China over the past decade 219 

in all seasons except for winter, consistent with Zhao et al. (2020). In spring and winter, O3 concentrations increased in all 220 

provinces, with trends of +0.39 ~ +2.75 ppb yr–1 and +0.42 ~ +1.30 ppb yr–1, respectively. Notably, Jilin province experienced 221 

an obvious improvement in O3 air quality during summer and autumn, with decreasing trends of –0.74 ppb yr–1 and –0.38 ppb 222 

yr–1, respectively, which was also confirmed by Gong et al. (2022). 223 
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The annual and seasonal mean MDA8 O3 concentrations across China are detailed in Fig. S4 and Fig. S5, providing a holistic 224 

depiction of the persisting spread of O3 pollution since 2013. On a national average, the O3 air quality was worst in summer, 225 

with the average O3 levels exceeding the air quality standard Grade I limit of 50 ppb almost every year. Notably, the summer 226 

of 2019 marked a peak period for O3 pollution, with an average concentration of 59.7 ppb (Fig. S5b). 227 

 228 
Figure 2. Trends in observed MDA8 O3 concentrations in China from 2013 to 2022 during (a) spring, (b) summer, (c) autumn, and (d) 229 

winter. Values in black, purple, blue, and green represent the mean trends for the whole China, BTH, YRD, and PRD, respectively.  230 

3.2 Uncertainty in meteorology-driven O3 trends caused by multi-dataset 231 

The traditional statistical method (the MLR model), which has a relatively low computational cost but can provide valuable 232 

insights into the quantification of meteorological contributions to O3 trends, was used to investigate the uncertainties in O3-233 

Meteorology analyses caused by different meteorological datasets. As shown in Fig. 3(a), meteorological conditions contribute 234 

to an increase in MDA8 O3 concentrations across all seasons in China, with the multi-dataset mean trends ranging from +0.19 235 

ppb yr–1 to +0.55 ppb yr–1. All three dataset-driven MLR models indicate that meteorology leads to the most rapid increase in 236 

MDA8 O3 concentrations in spring, with trends ranging from +0.47 ppb yr–1 to +0.71 ppb yr–1, and a low CV of 0.25. This 237 

suggests a high consistency among the three datasets in assessing the meteorological influence on surface O3 concentrations. 238 

During summer and autumn, relatively higher CVs were shown, indicating larger variability, despite lower meteorological 239 

influences on O3 trends. Specifically in autumn, the meteorology-driven O3 trend derived from the FNL-driven MLR model is 240 

4.1 times larger than that derived from the ERA5-driven MLR model. 241 
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Figure 3(b-d) depicts the meteorological impact on the MDA8 O3 trends in the three megacity clusters (BTH, YRD, and PRD). 242 

Meteorology caused the MDA8 O3 increase in most of the megacity clusters and seasons, except for BTH during autumn. In 243 

seasons where the meteorological effects derived from the three MLR models are all positive, the multi-dataset mean trends 244 

ranged from +0.09 to +0.33 ppb yr–1 in BTH, +0.18 to +0.68 ppb yr–1 in YRD, and +0.73 to +1.13 ppb yr–1 in PRD. Consistent 245 

with Fig. 3(a), meteorology triggered the most rapid increase in MDA8 O3 concentrations in spring across the three megacity 246 

clusters. The largest meteorological impact in BTH during spring was also revealed by Luo et al. (2024). Large CVs (>1.0) 247 

were observed in BTH during summer and autumn. Notably, the meteorological influence calculated by the three dataset-248 

driven MLR models even showed opposite trends in BTH during autumn, indicating challenges in assessing the meteorological 249 

impacts on surface O3 concentrations. In contrast, in YRD and PRD, the three MLR models demonstrated high consistency 250 

across almost all seasons. Although the largest CV reached 4.4 in PRD during summer, it was considered acceptable because 251 

the three MLR models indicated that meteorology had a minor influence (less than +0.1 ppb yr–1) on O3 trends. 252 

 253 

Figure 3. Meteorology-driven MDA8 O3 trends in (a) the whole China, (b) BTH, (c) YRD, and (d) PRD during four seasons. Values in red, 254 

blue, and purple represent trends calculated by ERA5-, MERRA2-, and FNL-driven multiple linear regression (MLR) model, respectively. 255 

The fourth black bar represents the multi-dataset mean trend. The absolute value of coefficient of variation (CV) for each season is also 256 

shown.  257 
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From a provincial perspective in Fig. S6, we can also see that the meteorological contributions to O3 trends are positive during 258 

spring and winter. Large uncertainties in O3-Meteorology analyses were identified during summer and autumn. There were 7 259 

and 12 provinces with controversial meteorological contributions identified by the three dataset-driven MLR models in 260 

summer and autumn, respectively. 261 

Figure 4 displays the spatial distribution of the CV values from the perspective of state-controlled stations in four seasons. 262 

Consistent with the national and provincial perspectives, the least uncertainties in O3-Meteorology analyses were observed in 263 

spring, with CVs less than 0.5 at 45% of stations. Obvious discrepancies in meteorology-driven O3 trends are found in summer 264 

and autumn, particularly in the NCP and northwestern China, with CVs greater than 1.0 at 33 ~ 40% of the stations. In autumn, 265 

it is noteworthy that the uncertainties caused by multi-dataset are lower in the south than in the north. In a study using the 266 

MLR model to predict O3 concentration, it was also found that the MLR had better performance in the south than in the north 267 

(Han et al., 2020).  268 

  269 

Figure 4. The absolute value of coefficient of variation (CV) for each state-controlled monitoring station in China during (a) spring, (b) 270 

summer, (c) autumn, and (d) winter. The CV is calculated by the standard deviation of the trends derived from ERA5-, MERRA2-, and FNL-271 

driven MLR models divided by the mean. The darker colour means the larger uncertainty in quantifying the meteorological impact on 272 

observed O3 trends. The proportion of state-control stations with CV less than 0.5 and greater than 1.0 is also shown. The outline marked in 273 

purple, blue, and green represents the region of BTH, YRD, and PRD, respectively. 274 

Based on the three dataset-driven MLR models, the meteorological and anthropogenic contributions to the MDA8 O3 trends 275 

in China during 2013–2022 were further examined. As presented in Fig. 5, both meteorological conditions and anthropogenic 276 
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emissions lead to O3 increases. According to the ERA5- and MERRA2-driven MLR models, variations in anthropogenic 277 

emissions were identified as the dominant factor driving the increase in MDA8 O3 concentrations across all seasons, with 278 

anthropogenic contributions ranging from 63.2% to 90.4%. The results suggest that more stringent emission control policies 279 

should be implemented to counteract the adverse effects of meteorological influences on O3 concentrations.  280 

 281 

Figure 5. Percentage contributions of meteorological conditions (blue) and anthropogenic emissions (red) to the trends in observed MDA8 282 

O3 concentrations calculated by ERA5-, MERRA2-, and FNL-driven multiple linear regression (MLR) model in China during (a) spring, (b) 283 

summer, (c) autumn, and (d) winter. Values in black represent the observed MDA8 O3 trends averaged over the whole China.  284 

It is interesting to note that the FNL-driven model almost always gave relatively larger predictions of meteorologically driven 285 

O3 trends compared to the models driven by ERA5 and MERRA2. To investigate whether this discrepancy was due to the 286 

coarser spatial resolution of the FNL dataset, a comparison was made between the FNL025-driven MLR model (0.25°×0.25°) 287 

and the FNL-driven MLR model (1.0°×1.0°). As depicted in Fig. S7, the deviation of the meteorology-driven trends calculated 288 

by the two MLR models was less than 0.1 in China and three megacity clusters across four seasons, indicating that different 289 

spatial resolutions have little effect on O3-Meteorology analyses. Further examination was conducted to assess the influence 290 

of meteorological variables on O3-Meteorology analyses. Table S3 lists the 10-year trends in each meteorological factor and 291 

shows a great discrepancy in the variable “PBLHday”. Zuo et al. (2023) also reported that FNL exhibited the highest 292 

uncertainty for the evaluation of PBLH compared to ERA5 and MERRA2. As Fig. S8 shows, constructing the FNL-driven 293 

MLR models using six meteorological variables without “PBLHday” can reduce the estimated meteorological impact by 0.08 294 
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to 0.20 ppb yr–1. To obtain a more reliable estimate, it is recommended to avoid using “PBLH” to build the FNL-driven MLR 295 

models when separating meteorological and anthropogenic influences on O3 concentrations in China.  296 

3.3 Uncertainty in meteorology-driven O3 trends caused by multi-method 297 

This section discusses the uncertainties caused by multi-method (i.e. MLR, RF, GC), all of which are driven by the MERRA2 298 

dataset. Figure 6 illustrates the meteorology-driven MDA8 O3 trends calculated by the MLR, RF, and GC models. For the 299 

whole China, the large uncertainties were evident during summer, when the meteorology-driven O3 trends derived from the 300 

MLR model are notably larger than those from the RF and GC models, with a CV of 2.0 (Fig. 6a). In the other three seasons, 301 

although the multi-method mean trends, ranging from +0.17 to +0.26 ppb yr–1, are 1.1 to 2.1 times lower than those computed 302 

by the three dataset-driven MLR models (Fig. 3a), all models converge on the conclusion that meteorological conditions 303 

contribute to the deterioration of O3 air quality.  304 

 305 

Figure 6. Meteorology-driven MDA8 O3 trends in (a) the whole China, (b) BTH, (c) YRD, and (d) PRD during four seasons. Values in red, 306 

blue, and purple represent trends calculated by multiple linear regression (MLR), random forest (RF), and GEOS-Chem (GC) models, 307 

respectively. The fourth black bar represents the multi-method mean trend. The absolute value of coefficient of variation (CV) for each 308 

season is also shown. 309 
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In YRD and PRD, the three models exhibit strong agreement in all seasons, with the largest CV of 0.61, where meteorology 310 

leads to an increase in O3 concentrations with multi-method mean trends of +0.17 to +0.47 ppb yr–1 and +0.10 to +0.83 ppb 311 

yr–1, respectively. Notably, the most rapid meteorology-driven O3 increase is also observed in spring (Fig. 6c and Fig. 6d), 312 

which is consistent with Fig. 3c and Fig. 3d. In BTH, the three models perform consistently well only in winter, with 313 

meteorology-driven O3 trends ranging from +0.09 to +0.26 ppb yr–1 and a CV of 0.55. It is also observed that in summer and 314 

autumn, meteorology plays a relatively small role in influencing O3 air quality despite the controversial results obtained by the 315 

three models (Fig. 6b). This finding aligns with a study focusing on the O3 air quality in BTH from 2015 to 2022 (Luo et al., 316 

2024), which suggested that meteorological conditions tend to increase MDA8 O3 concentration by only 0.01 μg m–3 in summer 317 

and decrease MDA8 O3 concentration by 0.3 μg m–3 in autumn from 2015 to 2022. 318 

 319 
Figure 7. The absolute value of coefficient of variation (CV) for each state-controlled monitoring station in China during (a) spring, (b) 320 

summer, (c) autumn, and (d) winter. The CV is calculated by the standard deviation of the trends derived from multiple linear regression 321 

(MLR), random forest (RF), and GEOS-Chem (GC) models divided by the mean. The darker colour means the larger uncertainty in 322 

quantifying the meteorological impact on observed O3 trends. The proportion of state-control stations with CV less than 0.5 and greater than 323 

1.0 is also presented. The outline marked in purple, blue, and green represents the region of BTH, YRD, and PRD, respectively. 324 

In addition, Fig. 6 illustrates that the meteorology-driven O3 trends obtained from GC are relatively smaller. As shown in Fig. 325 

S3, this difference could partly be attributed to the higher O3 values simulated by the GC model before 2018. It is crucial to 326 

take into account the overestimation of low-level O3 observations, as noted in previous studies (Hu et al., 2024c; Mao et al., 327 
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2024). To validate this hypothesis, we compared the meteorology-driven O3 trends calculated by MLR with those calculated 328 

by GC from 2018 to 2022, and a higher agreement was found over 2018–2022 compared to the 2013–2022 period in Fig. S9. 329 

From a provincial perspective, as depicted in Fig. S10, the three models together indicate that meteorology causes an O3 330 

increase in winter across almost all provinces except for Guizhou and Sichuan. In summer and autumn, meteorology leads to 331 

a decrease in 5 provinces, mainly in northeastern China, with trends ranging from –0.42 to –0.11 ppb yr–1. Interestingly, across 332 

all seasons, the three models introduce less uncertainty in the developed east coast regions such as Jiangsu, Fujian, and 333 

Guangdong compared to other provinces. This suggests that the impact of meteorology on O3 levels in these developed regions 334 

along the east coast of China is relatively reliable.  335 

From the perspective of state-controlled stations, Fig. 7 shows the spatial distribution of the CV during four seasons. The 336 

lowest disparities in the meteorology-driven MDA8 O3 trends persist in winter, with CVs of less than 0.5 recorded at 29% of 337 

the stations. In the other three seasons, however, significant discrepancies in meteorology-driven O3 trends are prominent, with 338 

a CV greater than 1.0 at least 48% of the stations. Similar to Fig. 4, it is noteworthy that in autumn, the uncertainties caused 339 

by multi-method are more pronounced in the northern regions compared to the southern regions. 340 

4 Conclusions and Discussions 341 

This study used the 10-year (2013–2022) surface O3 observations to clarify O3 variations during four seasons in China, and 342 

quantify the meteorological impacts on O3 trends, with a special focus on the uncertainties of meteorology-driven O3 trends. 343 

Diverse meteorological datasets (ERA5, MERRA2, FNL) and analytical methods (MLR, RF, GEOS-Chem) were employed 344 

to systematically analyze the uncertainties in meteorology-driven O3 trends caused by multi-dataset and multi-method which 345 

have not been assessed before. The coefficient of variation (CV) was adopted as a metric to assess the uncertainty. The main 346 

conclusions are as follows:  347 

Over the past decade, increasing trends in MDA8 O3 were observed at over 78% of state-controlled stations across all seasons, 348 

with the national trend of +1.31 ppb yr–1, +0.93 ppb yr–1, +0.79 ppb yr–1, and +0.80 ppb yr–1 in spring, summer, autumn, and 349 

winter, respectively.  350 

We first applied the MLR model (driven by ERA5, MERRA2, and FNL, respectively), which has proven its usefulness and 351 

reliability in O3-Meteorology analyses, to assess uncertainties caused by multi-dataset. For the whole China, all three dataset-352 

driven MLR models indicate that meteorological conditions have led to an increase in MDA8 O3 concentrations in four seasons, 353 

with multi-dataset mean trends ranging from +0.19 ppb yr–1 to +0.55 ppb yr–1. The models driven by different meteorological 354 

datasets showed a maximum meteorology-driven O3 trend of +0.55 ppb yr–1 with the highest consistency (CV=0.25) in spring. 355 

The FNL-driven model always obtained larger meteorology-driven O3 trends compared to the models driven by ERA5 and 356 
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MERRA2, which could be attributed to the inability to accurately evaluate PBLH in the FNL dataset. The dominant influence 357 

of anthropogenic emissions on O3 increase was also identified, highlighting the need for more stringent emission control 358 

policies to mitigate the adverse effects of meteorological conditions.  359 

We further applied the MLR, RF and GEOS-Chem model to obtain the meteorological influence on O3 trends to explore the 360 

uncertainties caused by multi-method. In China and three megacity clusters, the three methods consistently indicated positive 361 

meteorological contributions to O3 increases during spring and winter, with multi-method mean trends ranging from +0.12 to 362 

+0.83 ppb yr–1 and +0.17 to +0.70 ppb yr–1, respectively. In summer and autumn, especially in BTH, where the meteorological 363 

influence was relatively lower, three methods gave conflicting predictions of meteorological influence on O3 with CVs greater 364 

than 1.08. For the whole China, three different methods demonstrated optimal consistency in winter with CV of 0.40 and the 365 

worst consistency in summer with CV of 2.00. The meteorology-driven O3 trends obtained from GEOS-Chem model were 366 

almost relatively smaller than those obtained by other two methods, which could partly be attributed to the higher O3 values 367 

simulated by the GEOS-Chem model before 2018. 368 

All analyses driven by diverse meteorological datasets and analytical methods drew a consistent finding: meteorological 369 

conditions almost contribute to O3 increase across all seasons. The uncertainties of meteorology-driven O3 trends caused by 370 

different analytical methods were larger than those caused by diverse meteorological datasets. 371 

While this study advances understanding of meteorological contributions to O3 trends, there exist several limitations that 372 

should be overcome in future studies. More meteorological datasets and methods should be used to provide a more accurate 373 

assessment of uncertainties in O3-Meteorology analyses. Considering that the favourable effects of meteorology on O3 374 

pollution tend to be weaker after 2019 and the effects of COVID-19, it is necessary to conduct research over different periods 375 

and longer periods. In addition, further research is needed to focus on the meteorological contributions to O3 trends in northern 376 

China due to larger uncertainties.  377 
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