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Abstract. China has witnessed notable increases in surface ozone (Os) concentrations since 2013, with meteorology identified
as a critical driver. However, meteorological contributions vary with different meteorological datasets and analytical methods,
and their uncertainties remain unassessed. This study leveraged decadal observational O3 records (2013-2022) across China,
revealing intensified nationwide Os pollution with increasing O3 trends of 0.79-1.31 ppb yr* during four seasons. We gave
special focus on uncertainties of meteorology-driven O3 trends by using diverse meteorological datasets (ERA5, MERRAZ2,
FNL) and diverse analytical methods (Multiple Linear Regression, Random Forest, GEOS-Chem model). A useful statistic
(coefficient of variation, CV) was adopted as an uncertainty quantification metric. For multi-dataset analysis, models driven
by different meteorological datasets exhibited the maximum meteorology-driven O3 trend (+0.55 ppb yr, multi-dataset mean)
with the highest consistency (CV=0.25) in spring. The FNL-driven model always obtained larger trends compared to ERA5
and MERRAZ2, which could be attributed to inability to accurately evaluate planetary boundary layer height in FNL dataset.
For multi-method analysis, three methods demonstrated optimal consistency in winter (CV=0.40) and the worst consistency
in summer (CV=2.00). The meteorology-driven O3 trends obtained from GEOS-Chem model were almost smaller than those
obtained by other two methods, partly resulting from higher simulated O3 values before 2018. Overall, all analyses driven by
diverse meteorological datasets and analytical methods drew a robust conclusion that meteorological conditions almost boosted
O3 increases during all seasons; the uncertainties caused by different analytical methods were larger than those caused by

diverse meteorological datasets.

Keywords: Meteorological impact, O3 trend, Uncertainty
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1 Introduction

Since 2013, the Chinese government has implemented a series of policies to mitigate air pollution resulting from the repaid
industrial and urban expansion, such as the “Air Pollution Prevention and Control Action Plan” (Wang, 2021). Several criteria
air pollutants exhibited decreases due to the emission control efforts, but not ozone (Os) (Qi et al., 2023; Shen et al., 2020).In
China, O3 concentrations were increased by 50-124 ug m-= from 2015 to 2022 (Yao et al., 2024). The formation of surface O3
depends nonlinearly on its precursors and is strongly influenced by meteorological conditions and anthropogenic emissions
(Wang et al., 2017). The impact of emission-related factors on Os increase in China over the past decade has been extensively
debated, including the ineffective control of volatile organic compounds (VOCs) emissions, the heightened O3z photochemical
production due to the rapid decrease in PM2s, and the reduced nitric oxide (NO) titration effect (Li et al., 2019, 2022; Lin et
al., 2021a; Liu and Wang, 2020b; Ren et al., 2022).

Meteorological conditions also play a crucial role in shaping surface Os trends (Liu et al., 2023; Lu et al., 2019b), resulting in
increased O3 concentrations during warm seasons over most of the United States, the European Union, and China from 2014
to 2019 (Lyu et al., 2023). In China, the meteorological impacts on O3 levels may be comparable to the anthropogenic
contributions (Li et al., 2020; Liu and Wang, 2020a). From 2013 to 2018, meteorology could account for 43% of the daily
variability in summer surface O3 concentrations in eastern China (Han et al., 2020). Adverse meteorological conditions were
identified as the cause of the worsening Os trends during 2015-2020 in Beijing-Tianjin-Hebei (BTH), Yangtze River Delta
(YRD), and Pearl River Delta (PRD) regions (Hu et al., 2024b). In YRD, Dang et al. (2021) found that meteorological factors
contributed 84% of the O3 increase during the summers of 2012-2017. In PRD, meteorological conditions contributed 83% of
the increasing Os trends during the summers of 2015-2019 (Mousavinezhad et al., 2021). After 2019, meteorological
conditions tended to improve Os air quality (Liu et al., 2023; Wang et al., 2023). Compared to 2019, the wetter and cooler
meteorological conditions in 2020 reduced O3z concentrations by 2.9 ppb in eastern China (Yin et al., 2021). However, during
2022’s summer, a notable rebound in O3 levels occurred with Oz concentrations rising by 12-15 ppb in China compared to
2021, which was attributable to the extreme heatwave events (Qiao et al., 2024). With climate change, the frequency of extreme
O3 pollution events is expected to increase (Gao et al., 2023; Ji et al., 2024). Given the shifted meteorological effects on O3
and climate change, it is imperative to conduct Os-Meteorology researches focusing on longer time frames to gain deeper

insights into the long-term changes in O3 concentrations (Wang et al., 2024a).

Studies conducted over the past six years to determine the meteorological influence on the surface Oz trend have been
systematically reviewed, as documented in Table S1. The meteorological influence on surface O3 concentrations is commonly
assessed by using the traditional statistical model (TSM), machine learning model (MLM), and chemical transport model
(CTM), driven by reanalysis meteorological products such as the fifth-generation European Centre for Medium-Range
Weather Forecasts atmospheric reanalysis of the global climate (ERA5), the Modern-Era Retrospective Analysis for Research

and Applications, version 2 (MERRAZ2), and the National Centres for Environmental Prediction (NCEP) Final Operational
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Global Analysis data (FNL). Although several studies have demonstrated that meteorological impacts derived from CTM
results can corroborate the results of TSM (Liu et al., 2023; Yan et al., 2024) or MLM (Ni et al., 2024; Yin et al., 2021),
uncertainties in the determination of meteorological effects on surface O3 concentrations cannot be neglected. For example,
Pan et al. (2023) reported that the meteorological impact on Os trends in Beijing during 2013-2020 was +0.52 ppb yr, which
is only half of the value estimated by Gong et al. (2022).

Uncertainties in quantifying the drivers of Oz trends can be ascribed to the discrepancies between different meteorological
datasets and between different methods (Guo et al., 2021; Weng et al., 2022; Yao et al., 2024). Regarding the uncertainty
caused by different meteorological datasets, the meteorologically driven annual variations of O3 concentrations from 2017 to
2019 identified by the MERRA2-driven TSM are not consistent with the ERA5-driven TSM during the summer of YRD (Hu
et al., 2024a; Qian et al., 2022). During the summer of 2013-2019 in YRD, Li et al. (2019) reported a trend of +0.7 ppb yr
in meteorology-driven O3z concentrations using the MERRA2-driven TSM, while the trend of Yan et al. (2024) was —0.3 pg
m~2 yr! using the ERA5-driven TSM. Regarding the uncertainty caused by different methods, the meteorology-driven Os trend
identified by MLM for 2019-2021 was 2.4 times larger than that identified by CTM based on the same meteorological dataset
input (MERRAZ2) in the North China Plain (NCP) during summer (Wang et al., 2024a). In BTH, from 2021 to 2022, Luo et al.
(2024) identified a negative meteorological contribution based on the ERA5-driven MLM, while Yan et al. (2024) suggested

a positive contribution (+4.3 pg m-3) based on the ERA5-driven TSM during summer.

On the basis of the above-mentioned, large uncertainties caused by multi-dataset or multi-method exist in Os-Meteorology
analyses. However, available intercomparisons of Oz analyses mainly focused on predicting the Os; concentrations. For
example, Wang et al. (2024b) and Weng et al. (2023) compared the differences in Oz concentration prediction caused by
different dataset and models, respectively. The uncertainties in quantifying the meteorological contributions to O3 trends
caused by multi-dataset and multi-method remain unassessed. In addition, previous studies have predominantly focused on
summer Oz pollution, although reports indicate an extension of the O3 pollution season to winter and spring across major
clusters in China (Cao et al., 20244a; Li et al., 2021) and an unfavourable meteorological impact on Os air quality in spring and
winter in BTH (Luo et al., 2024). It is essential to conduct an intercomparison of meteorology-driven Oz quantification using

multi-dataset and multi-method across all seasons.

This study utilized 10-year (2013-2022) surface O3 observations in China to investigate long-term Os trends and quantify the
meteorological influence on Os trends using diverse meteorological datasets and analytical methods. Figure 1 shows the
framework and the main objectives were: (1) to assess uncertainties in identifying the meteorological influences caused by
multi-dataset. This was achieved by employing the TSM (i.e. multiple linear regression, MLR) driven by different reanalysis
meteorological products (i.e. ERA5, MERRAZ2, and FNL); (2) to assess uncertainties in identifying meteorological effects
caused by multi-method. This was achieved by establishing three models corresponding to TSM (i.e. MLR), MLM (i.e. random
forest, RF), and CTM (i.e. GEOS-Chem, GC), each driven by the MERRAZ2 product; (3) to calculate the mean of meteorology-
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driven O3 trends driven by three datasets (multi-dataset mean) and three methods (multi-method mean) to derive relatively
robust results.

Our paper is structured as follows: Section 2 briefly introduces the details of surface Os observations and different
meteorological datasets, as well as the framework of three methods, namely MLR, RF, and GC. The quantification of the
uncertainties in the meteorology-driven Oz trends caused by multi-dataset and multi-method is presented in Section 3. Section
4 concludes the paper. The findings of this study provide a scientific foundation for developing regional and seasonal strategies
to mitigate and manage Oz pollution in China.

1. O;-Meteorology analyses based on different datasets
_| Multiple Linear Regression l- Asscssment of - uncertaintics in
@ (MLR) | O,-Meteorology analyses caused
@ & MErRrA2 | AT Traditional statistics by multi-dataset/multi-method
Variations
in observed = — Random Forest ™
MDAS O, emporal | gy (RF)
L variables - - - - - -
concentrations Machine learning Quantification of meteorological
=» influence on the surface MDAS
_| N GEOS-Chem f‘ O, trends in all seasons
ivc  MEIC (GC)
He Inventory
> Chemical transport model
2. O;-Meteorology analyses based on different methods

Figure 1. The framework of the uncertainty assessment in this study.

2 Data and Methods
2.1 Surface O3 and meteorological data sources

Hourly surface O3 observations from over 1000 state-controlled stations operated by the China National Environmental
Monitoring Centre from 2013 to 2022 were used to analyze the long-term O3 trends across all seasons: spring (March-April-
May), summer (June-July-August), autumn (September-October-November), and winter (December-January-February). The
maximum daily 8-hour average (MDAS8) O3 was calculated as an air quality indicator after filtering out abnormal data using
the z-scores method. For detailed information on data quality control, refer to He et al. (2017).

In this study, we selected three widely used reanalysis products to assess the uncertainties caused by different meteorological
datasets. Variables during 2013-2022 from ERA5, MERRAZ2, and FNL, as detailed in Table S2, were selected as
meteorological inputs for building MLR models. These reanalyses have spatial resolutions of 0.250.25< 0.625<0.5< and
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1<<1<=0n a global latitude-longitude grid, respectively. In Section 3.2, we have also incorporated the NCEP FNL reanalysis
product with a spatial resolution of 0.25<0.25°(FNL025) for the period 2016-2022 to explore the effect of spatial resolution

on the analysis of uncertainties caused by multi-dataset.
2.2 Methods for obtaining long-term series and meteorological influence

2.2.1 Kolmogorov—Zurbenko (KZ) filter

The KZ filter, known for its ability to extract low frequency signals from time series data and handle missing values, has been
extensively applied in analyzing air quality variations (Eskridge et al., 1997; Rao and Zurbenko, 1994; Wise and Comrie,
2005). This filter is particularly useful in studying variations in air quality over time. The original time series of air pollutants

or meteorological variables (X (t)) can be decomposed by the KZ filter into the following form:

X(0) = Xsr () + Xy (£) + Xpr (1) M)
Xir (£) = KZ(365,3)X (t) 2

Xpr () = KZ(155X(t) ®)

Xsr () = X(£) = Xp, (0) (4)

In the decomposition process, X (t) represents the original time series, while X4 (t), Xgy (t), and X, (t) denote the short-
term, seasonal, and long-term components, respectively. The baseline component, Xg, (t), is defined as the sum of X (t) and
X.r (£). The KZ, o) filter executes q iterations with p as the moving average window length of the X (¢) series. Specially, the
X7 (t) series is derived using the KZ 345 3y filter, capturing long-term changes with periods exceeding 1.7 years. The Xp,, (t)
series is obtained through the KZ 5 sy filter, while the Xy (t) series represents short-term fluctuations with period less than
33 days in the original time series. The KZ filter can fill in missing values by using iterated moving average technique.
Although not all of the 0zone measurement sites were active over the entire period 2013-2022, missing value problem can be

handled for most stations after we conduct three iterations with 365-day moving average.

In this study, the KZ (3¢5 3) filter was applied to extract the long-term trends in observed, meteorology-driven, and emission-
driven MDAS8 O3 concentrations (see details in Fig. S1) during 2013-2022, as detailed in Sections 2.2.2, 2.2.3, and 2.2.4.

2.2.2 Stepwise MLR for separating meteorological influence

As vividly illustrated in Fig. S1, a data-based TSM (i.e., MLR integrating the KZ filter) was employed to separate the observed
MDAB8 O3 concentrations into meteorology-driven and emission-driven concentrations (Sadeghi et al., 2022; Shang et al., 2023;
Zhang etal., 2022a). We initially applied the KZ filter to disassemble the MDAB8 O3 time series and all meteorological variables
listed in Table S2 into short-term, baseline, and long-term components at individual state-controlled stations for each season.

Subsequently, a series of screening processes aligned with our previous research (Wang et al., 2024c), were executed to
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perform stepwise MLR on the short-term/baseline MDA8 O3 concentrations and a group of meteorological variables series,
respectively. The established MLR model is presented herein:

Cor(t) = bogy +Ziiqbys, X Mety(t) + ¢ (5)
Here, C, . (t) represents the MDA8 Os concentration for season s and monitoring station r, while Met;(t) signifies the i-th
meteorological variable out of a total of k, and b, ;- is the corresponding regression coefficient. b, ;- denotes the intercept

term, and ¢ is the residual term.

Finally, MLR models driven by meteorological variables from ERA5, MERRAZ2, or FNL will be constructed, allowing a
comprehensive analysis of multi-dataset uncertainties. The meteorological impact on O3 trends derived from the MERRA2-
driven MLR model will also be integrated into the analysis of multi-method uncertainties to improve the comparability of
results.

2.2.3 Random forest (RF) for deriving meteorological influence

The application of MLM in O3 air quality research is becoming increasingly prevalent due to its superior accuracy, user-
friendly nature, and capability to capture nonlinear relationships (Ni et al., 2024; Yao et al., 2024; Zhang et al., 2022b).
Considering the limited influence of discrepancy in Osz-Meteorology analyses stemming from different machine learning
algorithms (Wang et al., 2024a), we opted to build a representative MLM known as the meteorological normalisation model
based on the RF algorithm (Ding et al., 2023; Ji et al., 2024; Zhang et al., 2023), to delineate meteorology- and emission-

driven O3 concentrations.

RF stands out as a tree-based ensemble learning algorithm adept at handling nonlinear issues and reducing overfitting (Breiman,
2001). An RF model was developed for each state-controlled station in each season to predict the MDAS8 O3 concentration
using the Python package “Sklearn-RandomForestRegressor”. The predictors included six temporal variables (year, month of
a year, day of a week, day of a month, day of a year, Unix time), serving as proxies for anthropogenic emission intensity
(Grange et al., 2018), alongside six MERRA2 meteorological variables as listed in Table S2 (i.e. SLP, T2max, U10, V10,
RH2, PBLHday). The training dataset comprised 70% of the data, while the remaining 30% was reserved for model evaluation.
A statistical cross-validation technique was employed to determine optimal hyperparameters for enhancing RF prediction
performance (Weng et al., 2022). Coefficient of determination (R?) values were utilized to assess model performance for each

station, with stations exhibiting R? < 0.5 (marked in blue in Fig. S2b) being excluded to ensure model credibility.

After establishing the RF model, both the original time variables and resampled meteorological variables were utilized as input
data. The meteorological variables were resampled by randomly selecting data from the two weeks before and after the
specified date. To derive the de-weathered MDA8 Oz concentration for a given day (e.g., March 1, 2013), the random
resampling process was iterated a thousand times. Our methodology closely follows that of Vu et al. (2019), with a more
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detailed process shown in Fig. S2(a). The meteorology-driven MDA8 O3 concentrations were computed as the difference

between the observed concentrations and de-weathered concentrations (i.e. emission-driven MDA8 O3 concentrations).

2.2.4 GEOS-Chem (GC) simulation for quantifying meteorological influence

The numerical analysis of surface Os; in China was performed with the GC classic version 13.3.3
(https://github.com/geoschem/GCClassic/releases/tag/13.3.3). Developed as a global 3-D model, GC incorporates a fully
coupled O3—NOx-VOCs-aerosol-halogen chemical mechanism, driven by the MERRA2 meteorological input. Numerous
studies have leveraged GC to simulate Os air quality in China, demonstrating alignment between observational data and model
outcomes (Dai et al., 2024; Dang et al., 2021; Li et al., 2019; Lu et al., 2019a). We employed the nested-grid GC to simulate
the long-term surface O3 concentrations and to quantify the meteorology-driven MDAS8 Os trends over China. The nested-grid
domain was set over China’s mainland (15-55N, 70-140<E) with a horizontal resolution of 0.5 latitude by 0.625 “longitude
and 47 vertical layers extending up to an altitude of 0.01 hPa. A global simulation with a horizontal resolution of 23.5°
provided the chemical boundary conditions for the nested-grid simulation every 3 hours. To ensure model stability and
accuracy, a 6-month spin-up simulation was conducted before the commencement of the targeted 10-year period from March
2013 to February 2023.

Emissions management within GC is facilitated by the Harmonized Emissions Component, a system introduced by (Lin et al.,
2021b). Anthropogenic emissions are sourced from the Community Emissions Data System (CEDS) inventory globally, with
specific overwriting by the Multi-resolution Emission Inventory for China (MEIC) within the Chinese region. The simulations
for 2021-2022 adopt a similar approach to Zhai et al. (2021), using 2019 MEIC emissions with NOx emissions reduced by 8
~ 13% and 2017 MEIC with VOCs emissions reduced by 10 ~ 14%, based on the policy released by Ministry of Ecology and
Environment of the People's Republic of China. For natural emissions, biogenic VOCs, soil, and lightning NOx were calculated
online in the model. Emissions from biomass burning, ships, and aircraft are sourced from the Global Fire Emissions Database,
the CEDS inventory, and the 2019 Aircraft Emissions Inventory Code, respectively.

In order to assess the model’s performance and to get a quantification of meteorology-driven O3 trends during the period of
2013-2022, two sets of simulations were conducted: (1) BASE: the standard simulation of O3 concentrations from 2013 to
2022, where both meteorological fields and emissions (including anthropogenic, natural, and biomass emissions) vary year by
year from 2013 to 2022; (2) FixE2013: a “fixed-emission simulation” where meteorological conditions vary from 2013 to
2022 while anthropogenic emissions remain constant at 2013 levels. The FixE2013 simulation is designed to quantify the
meteorological influence on O3 variations. Figure S3 evaluates the performance of the GC simulation for 2013-2022. The GC
model generally captures the monthly variability in MDA8 O3 over China and three cluster megacities, with the correlation

coefficients greater than 0.80, although it always shows a high bias of surface O3 in warm seasons (Dai et al., 2024), which
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can be attributed to its inability to capture the complex terrain, local pollution sources and meteorological conditions, or

overestimates of the correlations between the surface Os concentration and temperature (Shen et al., 2022; Sun et al., 2021).

2.3 Assessment of uncertainties caused by multi-dataset and multi-method

In this study, the coefficient of variation (CV) is applied to assess the uncertainties in Os-Meteorology analyses caused by
different meteorological datasets or methods. The CV, calculated as the ratio of the standard deviation to the mean, serves as
a statistical metric commonly utilized to measure the diversity within datasets or models (Bedeian and Mossholder, 2000; Chen
et al., 2019). In this study, higher CVs indicate lower consistency of meteorologically driven Os trends derived from different
datasets or methods. Given the possibility of disparate meteorology-driven O3 trends detected by different datasets or methods,
we consider the absolute value of the CV as a quantitative indicator of the uncertainties. When examining the uncertainties
arising from different datasets, the CV represents the standard deviation of trends derived from the ERA5, MERRAZ2, and
FNL-driven MLR models divided by the mean. Similarly, in the context of multi-method uncertainties, the CV is the standard
deviation of trends identified by the MLR, RF, and GC models divided by the mean.

3 Results
3.1 Observed trends in surface O3z concentration

Figure 2 shows the trends in observed MDA8 O3 concentrations over a 10-year period during four seasons. Noteworthy
increases in O3 concentrations were observed at 78 ~ 93% of state-controlled stations over the years, with the national trend

being +1.31 ppb yr?, +0.93 ppb yr?, +0.79 ppb yr, and +0.80 ppb yr* in spring, summer, autumn, and winter, respectively.

The major eastern megacity clusters in China also displayed their highest MDAS8 O3 increase trends in spring, with trends of
+1.16 ppb yrtin BTH, +1.61 ppb yr* in YRD, and +1.48 ppb yr* in PRD, which has been reported in previous studies (Cao
et al., 2024b; Chen et al., 2020; Wang et al., 2022). During summer, BTH and YRD faced more severe challenges in O3
prevention and control compared to PRD, with rising MDA8 Os trends in the former two regions being about three times
higher than that in PRD (Fig. 2b).

In terms of O3 growth rates, Shanxi province and Anhui province ranked the top two provinces in China over the past decade
in all seasons except for winter, consistent with Zhao et al. (2020). In spring and winter, Oz concentrations increased in all
provinces, with trends of +0.39 ~ +2.75 ppb yr* and +0.42 ~ +1.30 ppb yr, respectively. Notably, Jilin province experienced
an obvious improvement in Oj air quality during summer and autumn, with decreasing trends of —0.74 ppb yr and —0.38 ppb

yr L, respectively, which was also confirmed by Gong et al. (2022).
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The annual and seasonal mean MDAS8 O3 concentrations across China are detailed in Fig. S4 and Fig. S5, providing a holistic
depiction of the persisting spread of O3 pollution since 2013. On a national average, the Os air quality was worst in summer,
with the average Oz levels exceeding the air quality standard Grade I limit of 50 ppb almost every year. Notably, the summer

of 2019 marked a peak period for O3 pollution, with an average concentration of 59.7 ppb (Fig. S5b).

(a) Spring (b) Summer
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Figure 2. Trends in observed MDAS8 O3 concentrations in China from 2013 to 2022 during (a) spring, (b) summer, (c) autumn, and (d)

winter. Values in black, purple, blue, and green represent the mean trends for the whole China, BTH, YRD, and PRD, respectively.

3.2 Uncertainty in meteorology-driven Os trends caused by multi-dataset

The traditional statistical method (the MLR model), which has a relatively low computational cost but can provide valuable
insights into the quantification of meteorological contributions to O3 trends, was used to investigate the uncertainties in Os-
Meteorology analyses caused by different meteorological datasets. As shown in Fig. 3(a), meteorological conditions contribute
to an increase in MDAS8 O3 concentrations across all seasons in China, with the multi-dataset mean trends ranging from +0.19
ppb yrtto +0.55 ppb yr*. All three dataset-driven MLR models indicate that meteorology leads to the most rapid increase in
MDAS8 O3 concentrations in spring, with trends ranging from +0.47 ppb yr ! to +0.71 ppb yr?, and a low CV of 0.25. This
suggests a high consistency among the three datasets in assessing the meteorological influence on surface O3z concentrations.
During summer and autumn, relatively higher CVs were shown, indicating larger variability, despite lower meteorological
influences on Oz trends. Specifically in autumn, the meteorology-driven Os trend derived from the FNL-driven MLR model is
4.1 times larger than that derived from the ERA5-driven MLR model.
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Figure 3(b-d) depicts the meteorological impact on the MDAS8 Os trends in the three megacity clusters (BTH, YRD, and PRD).
Meteorology caused the MDAS8 Os increase in most of the megacity clusters and seasons, except for BTH during autumn. In
seasons where the meteorological effects derived from the three MLR models are all positive, the multi-dataset mean trends
ranged from +0.09 to +0.33 ppb yrtin BTH, +0.18 to +0.68 ppb yr*in YRD, and +0.73 to +1.13 ppb yr* in PRD. Consistent
with Fig. 3(a), meteorology triggered the most rapid increase in MDAS8 O3 concentrations in spring across the three megacity
clusters. The largest meteorological impact in BTH during spring was also revealed by Luo et al. (2024). Large CVs (>1.0)
were observed in BTH during summer and autumn. Notably, the meteorological influence calculated by the three dataset-
driven MLR models even showed opposite trends in BTH during autumn, indicating challenges in assessing the meteorological
impacts on surface O3 concentrations. In contrast, in YRD and PRD, the three MLR models demonstrated high consistency
across almost all seasons. Although the largest CV reached 4.4 in PRD during summer, it was considered acceptable because

the three MLR models indicated that meteorology had a minor influence (less than +0.1 ppb yr) on Os trends.

(a) China
0s 4 CV: %?’? CV: 0.48 CV: 0.69 CV: 0.39
0.6 -
0.4 4
0.2 4

0.6 1
0.4 1
0.2 1
0 4
-0.2 1 12
-0.27 IJ 2
CV: 0.77 CV: 0.32 CV: 0.57

Meteorology-driven MDA8 O, trend (ppb yr')

CV: 4.40 CV: 0.17
1.5 4
2] 0.87
0.9 A 0.73 0.72 0.74
0.6 =5 Z
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Figure 3. Meteorology-driven MDAS8 Os trends in (a) the whole China, (b) BTH, (c) YRD, and (d) PRD during four seasons. Values in red,
blue, and purple represent trends calculated by ERA5-, MERRA2-, and FNL-driven multiple linear regression (MLR) model, respectively.
The fourth black bar represents the multi-dataset mean trend. The absolute value of coefficient of variation (CV) for each season is also

shown.
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From a provincial perspective in Fig. S6, we can also see that the meteorological contributions to O3 trends are positive during
spring and winter. Large uncertainties in Os-Meteorology analyses were identified during summer and autumn. There were 7
and 12 provinces with controversial meteorological contributions identified by the three dataset-driven MLR models in

summer and autumn, respectively.

Figure 4 displays the spatial distribution of the CV values from the perspective of state-controlled stations in four seasons.
Consistent with the national and provincial perspectives, the least uncertainties in Os-Meteorology analyses were observed in
spring, with CVs less than 0.5 at 45% of stations. Obvious discrepancies in meteorology-driven Os trends are found in summer
and autumn, particularly in the NCP and northwestern China, with CVs greater than 1.0 at 33 ~ 40% of the stations. In autumn,
it is noteworthy that the uncertainties caused by multi-dataset are lower in the south than in the north. In a study using the
MLR model to predict Oz concentration, it was also found that the MLR had better performance in the south than in the north
(Han et al., 2020).

(a) Spring (b) Summer

F 50°N A

I 40°N A

I 30°N 4

CV<0.5: 44.60%
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(d) Winter

(¢) Autumn
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/
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Coefficient of variation (CV)
Figure 4. The absolute value of coefficient of variation (CV) for each state-controlled monitoring station in China during (a) spring, (b)
summer, (¢) autumn, and (d) winter. The CV is calculated by the standard deviation of the trends derived from ERA5-, MERRA2-, and FNL-
driven MLR models divided by the mean. The darker colour means the larger uncertainty in quantifying the meteorological impact on
observed Oz trends. The proportion of state-control stations with CV less than 0.5 and greater than 1.0 is also shown. The outline marked in

purple, blue, and green represents the region of BTH, YRD, and PRD, respectively.

Based on the three dataset-driven MLR models, the meteorological and anthropogenic contributions to the MDA8 Oj trends

in China during 2013-2022 were further examined. As presented in Fig. 5, both meteorological conditions and anthropogenic

11



277
278
279
280

281
282

283
284

285
286
287
288
289
290
291
292
293
294

https://doi.org/10.5194/egusphere-2025-1880
Preprint. Discussion started: 19 May 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

emissions lead to Oz increases. According to the ERA5- and MERRA2-driven MLR models, variations in anthropogenic
emissions were identified as the dominant factor driving the increase in MDAS8 O3 concentrations across all seasons, with
anthropogenic contributions ranging from 63.2% to 90.4%. The results suggest that more stringent emission control policies

should be implemented to counteract the adverse effects of meteorological influences on O3z concentrations.

(a) Spring (b) Summer

Obs: 1.31 Obs: 0.93

(c) Autumn (d) Winter

Obs: 0.80 l

Obs: 0.79

Meteorology-driven trend [JJES] —— - a
unit: ppb yr
Emission-driven trend & LIS At pRoY

Figure 5. Percentage contributions of meteorological conditions (blue) and anthropogenic emissions (red) to the trends in observed MDAS8
O3 concentrations calculated by ERA5-, MERRA2-, and FNL-driven multiple linear regression (MLR) model in China during (a) spring, (b)
summer, (c) autumn, and (d) winter. Values in black represent the observed MDA8 O3 trends averaged over the whole China.

It is interesting to note that the FNL-driven model almost always gave relatively larger predictions of meteorologically driven
Os trends compared to the models driven by ERA5 and MERRAZ2. To investigate whether this discrepancy was due to the
coarser spatial resolution of the FNL dataset, a comparison was made between the FNL025-driven MLR model (0.25<0.259
and the FNL-driven MLR model (1.0°<1.09. As depicted in Fig. S7, the deviation of the meteorology-driven trends calculated
by the two MLR models was less than 0.1 in China and three megacity clusters across four seasons, indicating that different
spatial resolutions have little effect on Os-Meteorology analyses. Further examination was conducted to assess the influence
of meteorological variables on Os-Meteorology analyses. Table S3 lists the 10-year trends in each meteorological factor and
shows a great discrepancy in the variable “PBLHday”. Zuo et al. (2023) also reported that FNL exhibited the highest
uncertainty for the evaluation of PBLH compared to ERA5 and MERRA2. As Fig. S8 shows, constructing the FNL-driven

MLR models using six meteorological variables without “PBLHday” can reduce the estimated meteorological impact by 0.08
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to 0.20 ppb yr. To obtain a more reliable estimate, it is recommended to avoid using “PBLH” to build the FNL-driven MLR

models when separating meteorological and anthropogenic influences on O3 concentrations in China.

3.3 Uncertainty in meteorology-driven Os trends caused by multi-method

This section discusses the uncertainties caused by multi-method (i.e. MLR, RF, GC), all of which are driven by the MERRA2
dataset. Figure 6 illustrates the meteorology-driven MDAS8 Og trends calculated by the MLR, RF, and GC models. For the
whole China, the large uncertainties were evident during summer, when the meteorology-driven O3 trends derived from the
MLR model are notably larger than those from the RF and GC models, with a CV of 2.0 (Fig. 6a). In the other three seasons,
although the multi-method mean trends, ranging from +0.17 to +0.26 ppb yr, are 1.1 to 2.1 times lower than those computed
by the three dataset-driven MLR models (Fig. 3a), all models converge on the conclusion that meteorological conditions

contribute to the deterioration of Os air quality.

(a) China
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Figure 6. Meteorology-driven MDAS8 Os trends in (a) the whole China, (b) BTH, (c) YRD, and (d) PRD during four seasons. Values in red,
blue, and purple represent trends calculated by multiple linear regression (MLR), random forest (RF), and GEOS-Chem (GC) models,
respectively. The fourth black bar represents the multi-method mean trend. The absolute value of coefficient of variation (CV) for each
season is also shown.
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In YRD and PRD, the three models exhibit strong agreement in all seasons, with the largest CV of 0.61, where meteorology
leads to an increase in Oz concentrations with multi-method mean trends of +0.17 to +0.47 ppb yr~* and +0.10 to +0.83 ppb
yrt, respectively. Notably, the most rapid meteorology-driven O3 increase is also observed in spring (Fig. 6¢c and Fig. 6d),
which is consistent with Fig. 3c and Fig. 3d. In BTH, the three models perform consistently well only in winter, with
meteorology-driven Os trends ranging from +0.09 to +0.26 ppb yr* and a CV of 0.55. It is also observed that in summer and
autumn, meteorology plays a relatively small role in influencing Os air quality despite the controversial results obtained by the
three models (Fig. 6b). This finding aligns with a study focusing on the O3 air quality in BTH from 2015 to 2022 (Luo et al.,
2024), which suggested that meteorological conditions tend to increase MDAS O3 concentration by only 0.01 ug m=3 in summer

and decrease MDAS8 O3 concentration by 0.3 pg m2 in autumn from 2015 to 2022.

(a) Spring (b) Summer
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Figure 7. The absolute value of coefficient of variation (CV) for each state-controlled monitoring station in China during (a) spring, (b)
summer, (c) autumn, and (d) winter. The CV is calculated by the standard deviation of the trends derived from multiple linear regression
(MLR), random forest (RF), and GEOS-Chem (GC) models divided by the mean. The darker colour means the larger uncertainty in
quantifying the meteorological impact on observed Os trends. The proportion of state-control stations with CV less than 0.5 and greater than

1.0 is also presented. The outline marked in purple, blue, and green represents the region of BTH, YRD, and PRD, respectively.

In addition, Fig. 6 illustrates that the meteorology-driven O3 trends obtained from GC are relatively smaller. As shown in Fig.
S3, this difference could partly be attributed to the higher O3 values simulated by the GC model before 2018. It is crucial to

take into account the overestimation of low-level O3 observations, as noted in previous studies (Hu et al., 2024c; Mao et al.,
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2024). To validate this hypothesis, we compared the meteorology-driven Os trends calculated by MLR with those calculated
by GC from 2018 to 2022, and a higher agreement was found over 2018-2022 compared to the 2013-2022 period in Fig. S9.

From a provincial perspective, as depicted in Fig. S10, the three models together indicate that meteorology causes an Og
increase in winter across almost all provinces except for Guizhou and Sichuan. In summer and autumn, meteorology leads to
a decrease in 5 provinces, mainly in northeastern China, with trends ranging from —0.42 to —0.11 ppb yr*. Interestingly, across
all seasons, the three models introduce less uncertainty in the developed east coast regions such as Jiangsu, Fujian, and
Guangdong compared to other provinces. This suggests that the impact of meteorology on Os levels in these developed regions
along the east coast of China is relatively reliable.

From the perspective of state-controlled stations, Fig. 7 shows the spatial distribution of the CV during four seasons. The
lowest disparities in the meteorology-driven MDAS8 O3 trends persist in winter, with CVs of less than 0.5 recorded at 29% of
the stations. In the other three seasons, however, significant discrepancies in meteorology-driven Oz trends are prominent, with
a CV greater than 1.0 at least 48% of the stations. Similar to Fig. 4, it is noteworthy that in autumn, the uncertainties caused

by multi-method are more pronounced in the northern regions compared to the southern regions.

4 Conclusions and Discussions

This study used the 10-year (2013-2022) surface O3 observations to clarify Os variations during four seasons in China, and
quantify the meteorological impacts on O3 trends, with a special focus on the uncertainties of meteorology-driven Os trends.
Diverse meteorological datasets (ERA5, MERRAZ2, FNL) and analytical methods (MLR, RF, GEOS-Chem) were employed
to systematically analyze the uncertainties in meteorology-driven Os trends caused by multi-dataset and multi-method which
have not been assessed before. The coefficient of variation (CV) was adopted as a metric to assess the uncertainty. The main

conclusions are as follows:

Over the past decade, increasing trends in MDAS8 O3 were observed at over 78% of state-controlled stations across all seasons,
with the national trend of +1.31 ppb yr?, +0.93 ppb yr, +0.79 ppb yr?, and +0.80 ppb yr* in spring, summer, autumn, and

winter, respectively.

We first applied the MLR model (driven by ERA5, MERRAZ2, and FNL, respectively), which has proven its usefulness and
reliability in Oz-Meteorology analyses, to assess uncertainties caused by multi-dataset. For the whole China, all three dataset-
driven MLR models indicate that meteorological conditions have led to an increase in MDAS8 O3 concentrations in four seasons,
with multi-dataset mean trends ranging from +0.19 ppb yr to +0.55 ppb yr-t. The models driven by different meteorological
datasets showed a maximum meteorology-driven Oz trend of +0.55 ppb yr-* with the highest consistency (CV=0.25) in spring.

The FNL-driven model always obtained larger meteorology-driven O trends compared to the models driven by ERAS5 and
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MERRAZ2, which could be attributed to the inability to accurately evaluate PBLH in the FNL dataset. The dominant influence
of anthropogenic emissions on O3 increase was also identified, highlighting the need for more stringent emission control

policies to mitigate the adverse effects of meteorological conditions.

We further applied the MLR, RF and GEOS-Chem model to obtain the meteorological influence on Os trends to explore the
uncertainties caused by multi-method. In China and three megacity clusters, the three methods consistently indicated positive
meteorological contributions to O3 increases during spring and winter, with multi-method mean trends ranging from +0.12 to
+0.83 ppb yr*and +0.17 to +0.70 ppb yr2, respectively. In summer and autumn, especially in BTH, where the meteorological
influence was relatively lower, three methods gave conflicting predictions of meteorological influence on O3 with CVs greater
than 1.08. For the whole China, three different methods demonstrated optimal consistency in winter with CV of 0.40 and the
worst consistency in summer with CV of 2.00. The meteorology-driven Oz trends obtained from GEOS-Chem model were
almost relatively smaller than those obtained by other two methods, which could partly be attributed to the higher O3 values
simulated by the GEOS-Chem model before 2018.

All analyses driven by diverse meteorological datasets and analytical methods drew a consistent finding: meteorological
conditions almost contribute to O3 increase across all seasons. The uncertainties of meteorology-driven Oz trends caused by

different analytical methods were larger than those caused by diverse meteorological datasets.

While this study advances understanding of meteorological contributions to O3 trends, there exist several limitations that
should be overcome in future studies. More meteorological datasets and methods should be used to provide a more accurate
assessment of uncertainties in Os-Meteorology analyses. Considering that the favourable effects of meteorology on O3
pollution tend to be weaker after 2019 and the effects of COVID-19, it is necessary to conduct research over different periods
and longer periods. In addition, further research is needed to focus on the meteorological contributions to Os trends in northern
China due to larger uncertainties.

Data availability. The surface Oz observations are obtained from https://quotsoft.net/air/. The ERA5, MERRAZ2, FNL, and
FNLO025 reanalysis meteorological data  are taken from https://cds.climate.copernicus.eu/datasets,
http://geoschemdata.wustl.edu/ExtData/GEOS_0.5x0.625_AS/MERRA-2/,  https://rda.ucar.edu/datasets/d083002/,  and
https://rda.ucar.edu/datasets/ds083-3/, respectively. The code of the GEOS-Chem (version 13.3.3) model is available at
https://zenodo.org/records/5748260.
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